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Abstract 
The purpose of this paper is to demonstrate the power of two mostly used definitions for fractional 

differentiation, namely, the Riemann-Liouville and Caputo fractional operator to solve some linear fractional-

order differential equations. The emphasis is given to the most popular Caputo fractional operator which is more 

suitable for the study of differential equations of fractional order..Illustrative examples are included to 

demonstrate the procedure of solution of couple of fractional differential equations having Caputo operator 

using Laplace transformation. Itshows that the Laplace transforms is a powerful and efficient technique for 

obtaining analytic solution of linear fractional differential equations 

Keywords: Fractional differential equations; The Riemann-Liouville and Caputo fractional derivatives, 

Laplace Transform method. 

 

I. Introduction 
Although the fractional calculus has a long history and has been applied in various fields in real life, the 

interest in the study of FDEs and their applications has attracted the attention of many researchers and scientific 

societies beginning only in the last three decades. Since the exact solutions of most of the FDEs cannot be found 

easily, the analytical and numerical methods must be used. During the last decades, several methods have been 

proposed to solve  fractional partial differential equations, fractional integro-differential equations and dynamic 

systems containing fractional derivatives, such as Adomian decomposition method [1, 2, 3 ], He’s variational 

iteration method [8], homotopy perturbation method [9], homotopy analysis method [5], existence and 

uniqueness results by using monotone method[4,6], Another powerful method which can also give explicit form 

for the solution is the Laplace transform  method, which will allow us to transform fractional differential 

equations into algebraic equations and then by solving this algebraic equations, we can obtain the unknown 

function by using the Inverse Laplace Transform. 

Fractional differential equations concerning the Riemann-Liouville fractional operators [7] or the Caputo 

derivative have been recommended by many authors. However, the Caputo (1967) definition of fractional 

derivatives not only provides initial conditions with clear physical interpretation but it is also bounded, meaning 

that the derivative of a constant is equal to 0. 

In this paper, section 2 is begin by introducing some necessary definitions and properties of The Riemann-

Liouville and Caputo fractional derivatives.In section 3 the Laplace transform and the inverse Laplace transform 

is discussed in details. In section 4, Illustrative examples are included to demonstrate the procedure of solution 

of fractional differential equation using Laplace transformation. 

 

II. Definitions and Properties 
2.1 Gamma function [12] 

The Gamma function denoted by 𝛤 𝑧 , is a generalization of factorial function𝑛! for complex argument 

with positive real part it is defined as 

 

 𝛤 𝑧 =   𝑒−𝑡𝑡𝑧−1∞

0
𝑑𝑡                 ReZ> 0 

 

by analytic continuation the function is extended to whole complex plane except for the points {0, -1, -2, -3,…}   

where it has simple poles.  

  

2.2 The Mittag-Leffler Functions [12] 

While the Gamma function is a generalization of factorial function, the Mittag-Leffler function is a 

generalization of exponential function, first introduced as a one parameter function by the series  
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𝐸𝛼 𝑧 =   
𝑧𝑘

𝛤(𝛼𝑘 + 1)
,     𝛼 > 0,   𝛼 𝜖 𝑅,

∞

𝑘=0

  𝑧 𝜖 𝐶 

Later the two parameter generalization introduced by Agarwal 

𝐸𝛼 ,𝛽  𝑧 =   
𝑧𝑘

𝛤(𝛼𝑘 +  𝛽)
,     𝛼, 𝛽 > 0,    𝛼 , 𝛽𝜖 𝑅

∞

𝑘=0

 

 

2.2 The Riemann-Liouville and Caputo Fractional Fractional Differential operator 

(a)  Suppose that 𝛼 > 0, 𝑡 > 𝑎, 𝛼, 𝑎, 𝑡 𝜖 𝑅.  Then fractional operator 

 

𝐷𝛼𝑓 𝑡 =  
1

𝛤 𝑛 − 𝛼 

𝑑𝑛

𝑑𝑡𝑛
 

𝑓 𝑥 

 𝑡 − 𝑥 𝛼+1−𝑛

𝑡

𝑎

 𝑑𝑥;               𝑛 − 1 < 𝛼 < 𝑛 

is called  the Riemann-Liouville fractional derivative or Riemann-Liouville fractional differential operator  of 

order 𝛼. 

 

(b)  Another definition that can be used to compute a differ integral was introduced by Caputo in 

the 1960s.  The benefit of using the Caputo definition is that it not only allows for the consideration of easily 

interpreted initial conditions, but it is also bounded, meaning that the derivative of a constant is equal to 0. 

Suppose that 𝛼 > 0, 𝑡 > 𝑎, 𝛼, 𝑎, 𝑡 𝜖 𝑅.  Then fractional operator 

𝐷∗
𝛼𝑓 𝑡 =  

1

𝛤(𝑛 − 𝛼)
 

𝑓(𝑛)(𝑥)

(𝑡 − 𝑥)𝛼+1−𝑛

𝑡

𝑎

 𝑑𝑥              𝑛 − 1 < 𝛼 < 𝑛              

is called  the Caputo fractional derivative or Caputo fractional  differential operator  of order 𝛼 [10] 

 

2.3 Properties of Caputo Fractional Differential operator 

 Representation 

Let n − 1 < 𝛼 < 𝑛,n ∈ N, α ∈ R and f t  be such that  D∗
αf t  exist.  then 

 

𝐷∗
𝛼𝑓 𝑡 = 𝐼𝑛−𝛼𝐷𝑛𝑓 𝑡  

This means that the Caputo fractional operator is equivalent to  𝑛 − 𝛼  fold integration after 𝑛𝑡order 

differentiation. While Riemann-Liouville fractional derivative is equivalent to the composition of same operator 

but in reverse order. 

 Interpolation  

Let n − 1 < 𝛼 < 𝑛,n ∈ N, α ∈ R and f t  be such that  D∗
αf t  exist. Then following properties hold for the 

Caputo operator. 

Lim
𝛼→𝑛

𝐷∗
𝛼  𝑓 𝑡 =  𝑓 𝑛  𝑡 , 

 

Lim
𝛼→𝑛−1

𝐷∗
𝛼  𝑓 𝑡 =  𝑓 𝑛−1  𝑡 − 𝑓 𝑛−1 (0) 

 

 Linearity: 

Let n − 1 < 𝛼 < 𝑛,n ∈ N, α, λ ∈ C  and functions f t and  g t  be such that both  
𝐷α f t  and D∗

α g t   exist.  the Caputo fractional derivative is a linear operator, i. e. 
 

𝐷∗
𝛼  𝜆𝑓 𝑡 + 𝑔 𝑡  =  𝜆𝐷∗

𝛼  𝑓 𝑡 + 𝐷∗
𝛼  𝑔 𝑡  

 

 Non-commutation 

Let  n − 1 < 𝛼 < 𝑛, m, n ∈ N, α ∈ R and the function f t  is such that D∗
α f t  exists.  

Then in general   

𝐷∗
𝛼𝐷𝑚 𝑓 𝑡 =  𝐷∗

𝛼+𝑚  𝑓 𝑡 ≠  𝐷𝑚 𝐷∗
𝛼  𝑓 𝑡  

 

 In general the two operators, Riemann- Liouville and Caputo, do not coincide, but if function  

f t  be such that f  s  0 = 0,                                                                                                        
  s = 0, 1, 2, . . . n − 1  then the Riemann − Liouville and Caputo fractional derivatives coincides  

𝐷𝛼𝑓 𝑡 =  𝐷∗
𝛼  𝑓 𝑡  
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 Initial condition 

Consider the following differential equation 

           𝐷𝛼𝑦 𝑡 − 𝑦 𝑡 = 0;      t > 0, 𝑛 − 1 < 𝛼 < 𝑛 ∈ 𝑁,(A) 

 

 [   𝐷𝛼−𝑘−1𝑦 𝑡 ]𝒕=𝟎 =𝑏𝑘           𝑘 = 0, 1,     2, …    𝑛 − 1 

𝐷∗
𝛼𝑦 𝑡 − 𝑦 𝑡 = 0;      t > 0, 𝑛 − 1 < 𝛼 < 𝑛 ∈ 𝑁     (B) 

𝑦(𝑘) 0 =  𝑐𝑘𝑘 = 0, 1, 2, …    𝑛 − 1 

Here it is worth to note that: 

In (A) Riemann-Liouville fractional derivative is applicable and initial conditions with Fractional derivative 

are required. In such initial value problems solutions are practically useless, because there is no clear physical 

interpretation of this type of initial condition [12]. On the contrary in (B) the Caputo Fractional differentiation 

operator is applicable, standard initial conditions in terms of derivatives of integer order is involved. These 

initial conditions have clear physical interpretation as an initial position y(a) at point a, the initial velocity𝑦′ a ,
initial acceleration 𝑦′′ a and so on.  

This is a main advantage of Caputo operator over Riemann-Liouvillefractional operator. 

 The Laplace transform of the Caputo Fractional derivative is a generalization of the Laplace 

transform of integer order derivative, where n is replaced by  𝛼.  The same does not hold for the Riemann-

Liouville case. This Property is an important advantage of the Caputo operator over the Riemann-Liouville 

operator. 

 

 Let 𝑡 > 0, 𝛼 ∈ 𝑅, 𝑛 − 1 < 𝛼 < 𝑛 ∈ 𝑁  then the following relation between the Riemann Liouville and 

the Caputo operator holds [11] 

𝐷∗
𝛼𝑓(𝑡) =  𝐷𝛼𝑓 𝑡 −  

𝑡𝑘−𝛼

𝛤(𝑘 + 1 − 𝛼)
𝑓 𝑘 

𝑛−1

𝑘=0

 0  

 

III. The Laplace Transform 
3.1Definition: 

Let f t be a function of a variable t such that the function 𝑒−𝑠𝑡𝑓 𝑡 is integrable in  [0, ∞)for some domain 

of values of s. The Laplace transform of the function 𝑓 𝑡 is defined for above domain values of s and it is 

denoted by [12] 𝐿 𝑓 𝑡  =   𝑒−𝑠𝑡𝑓 𝑡 𝑑𝑡.
∞

0
 

 The Laplace transform of function 𝑓 𝑡 =  𝑡𝛼  is given for𝛼 as non-integer order    𝑛 − 1 <  𝛼 ≤ 𝑛 

 

𝐿 𝑡𝛼 =  
𝛤(𝛼 + 1)

𝑆𝛼+1
 

 

3. 2Laplace Transform of the basic fractional operator 
Suppose that p > 0, and F(s) is the Laplace transform of f(t)  then following statements holds [12]  

 

(a) The Laplace transform of Riemann-Liouville Fractional differential operator of order 𝛼 

is given by 

             𝐿 𝐷𝛼𝑓 𝑡  =  𝑠𝛼𝐹 𝑠 −  𝑠𝑛−𝑘−1[𝐷𝑘𝐼𝑛−𝛼𝑓 𝑡 ]𝑡=0

𝑛−1

𝑘=0

       𝑛 − 1 < 𝛼 < 𝑛                     (3.1) 

(b) The Laplace transform of Caputo Fractional differential operator of order α is given by  

               𝐿 𝐷∗
𝛼𝑓 𝑡  =  𝑠𝛼𝐹 𝑠 −  𝑠𝛼−𝑘−1𝑓 𝑘 

𝑛−1

𝑘=0

 0 ,        𝑛 − 1 < 𝛼 ≤ 𝑛 ∈ 𝑁                       (3. 2)  

 Which can also be obtain in the form 

 

            𝐿 𝐷∗
𝛼𝑓 𝑡  =  

𝑠𝑛𝐹 𝑠 − 𝑠𝑛−1𝑓 0 − 𝑠𝑛−2𝑓 ′ 0 − ⋯ − 𝑓 𝑛−1 (0)

𝑠𝑛−𝛼
                                 (3. 3) 

 

 

(c) Let  𝛼, 𝛽, 𝜆 ∈ 𝑅, 𝛼, 𝛽 > 0, 𝑚 ∈ 𝑁.  Then the Laplace transform of the two – parameter function of 

Mittag-Leffler type is given by 
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𝐿 𝑡𝛼𝑚 +𝛽−1𝐸𝛼 ,𝛽
 𝑚  ±𝜆𝑡𝛼  =  

𝑚 ! 𝑠𝛼−𝛽

(𝑠𝛼  ∓ 𝜆)𝑚 +1 ,    𝑅𝑒 𝑠 >  𝜆 
1

𝛼                               (3.4) 

 

This formula is mainly used for solving FDEs. 

 

Lemma1:Let   𝑎 ∈ 𝑅, 𝛼 ≥  𝛽 > 0 , 𝑠𝛼−𝛽 >  𝑎    we have following inverse Laplace transform   formula 

𝐿−1  
1

(𝑠𝛼 + 𝑎𝑠𝛽 )𝑛+1
 =  𝑡𝛼 𝑛+1 −1  

(−𝑎)𝑘  
𝑛 + 𝑘

𝑘
 

𝛤(𝑘 𝛼 − 𝛽 +  𝑛 + 1 𝛼)

∞

𝑘=0

𝑡𝑘(𝛼−𝛽)         (3. 5) 

Proof : 
1

(𝑠𝛼 + 𝑎𝑠𝛽 )𝑛+1
  =

1

(𝑠𝛼 )𝑛+1  1 +  
𝑎

𝑠𝛼−𝛽 
𝑛+1 

=
1

(𝑠𝛼)𝑛+1
  

𝑛 + 𝑘
𝑘

 

∞

𝑘=0

 
−𝑎

𝑠𝛼−𝛽
 

𝑘

        𝑠𝑖𝑛𝑐𝑒     
1

 1 + 𝑥 𝑛+1
 =     

𝑛 + 𝑘
𝑘

  −𝑥 𝑘

∞

𝑘=0

  

 

Applying inverse Laplace transform 

= 𝐿−1  
1

(𝑠𝛼)𝑛+1
   

𝑛 + 𝑘
𝑘

 

∞

𝑘=0

 −𝑎 𝑘𝐿−1  
1

𝑠𝑘 𝛼−𝛽 
  

 

 = 𝑡𝛼 𝑛+1 −1  
(−𝑎)𝑘  

𝑛 + 𝑘
𝑘

 

𝛤(𝑘 𝛼 − 𝛽 +  𝑛 + 1 𝛼)

∞

𝑘=0

𝑡𝑘(𝛼−𝛽) 

 

 

Lemma 2:𝛼 ≥  𝛽, 𝛼 > 𝛾,   𝑎 ∈ 𝑅,    𝑠𝛼−𝛽 >  𝑎 , 𝑠𝛼 + 𝑎𝑠𝛽  >  𝑏  
 

𝐿−1  
𝑠𝛾

(𝑠𝛼 + 𝑎𝑠𝛽 + 𝑏)
 = 𝑡𝛼−𝛾−1   

(−𝑏)𝑛(−𝑎)𝑘  
𝑛 + 𝑘

𝑘
 

𝛤(𝑘 𝛼 − 𝛽 +  𝑛 + 1 𝛼 − 𝛾)

∞

𝑘=0

𝑡𝑘 𝛼−𝛽 +𝑛𝛼

∞

𝑛=0

      (3.6) 

 

Proof:      

 
𝑠𝛾

(𝑠𝛼 + 𝑎𝑠𝛽 + 𝑏)
 =  

𝑠𝛾

(𝑠𝛼 + 𝑎𝑠𝛽 )(1 +
𝑏

𝑠𝛼 +𝑎𝑠𝛽 )
=  

𝑠𝛾

(𝑠𝛼 + 𝑎𝑠𝛽 )

1

(1 +
𝑏

𝑠𝛼 +𝑎𝑠𝛽 )
 

 

Since 
𝑏

𝑠𝛼 +𝑎𝑠𝛽  < 1,   𝑎𝑛𝑑  using    
1

 1+𝑥 
 =     −1 𝑛𝑥𝑛∞

𝑛=0   

 

=
𝑠𝛾

(𝑠𝛼 + 𝑎𝑠𝛽 )
  −1 𝑛(

𝑏

𝑠𝛼 + 𝑎𝑠𝛽
)𝑛

∞

𝑛=0

  =       −𝑏 𝑛

∞

𝑛=0

𝑠𝛾

(𝑠𝛼 + 𝑎𝑠𝛽 )𝑛+1
 

 

Applying inverse Laplace transform and using Lemma 1,   also𝐿−1{𝑠𝛾} = 
𝑡−𝛾−1

𝛤(−𝛾)
 

 

= 𝑡𝛼−𝛾−1   
(−𝑏)𝑛 (−𝑎)𝑘  

𝑛 + 𝑘
𝑘

 

𝛤(𝑘 𝛼 − 𝛽 +  𝑛 + 1 𝛼 − 𝛾)

∞

𝑘=0

𝑡𝑘 𝛼−𝛽 +𝑛𝛼

∞

𝑛=0

 

 

IV. Applications 
In this section we obtain the solution of some linear fractional differential equations with Caputo operator 

using Laplace transform method.The Laplace transform method is one of the most powerful methods of solving 

LFDE switch constant coefficients. On the other hand it is useless for LFDEs with general variablecoefficients 

or for nonlinear FDEs. 

 

Example 1.Consider the fractional differential equation of the form 
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         𝐷∗
𝛼𝑦(𝑡)  = 𝑓(𝑡)  with initial conditions 

𝑦 𝑘  0 =  𝑐𝑘 ;         𝑘 = 0, 1, 2, …   𝑛 − 1                                                            
Where 𝐷∗

𝛼denotes Caputo derivative and n is the smallest integer greater than 𝛼  

 

Solution: 

Suppose that 𝑓(𝑡)is a sufficiently good function i.e. Laplace transform of  𝑓 (𝑡 )existApplying the Laplace 

transform on both the sides of equation we have, 

L{𝐷∗
𝛼𝑦(𝑡)}  = L{𝑓(𝑡)} 

 

Applying (3.2) on LHS we get,   𝑠𝛼𝑌 𝑠 −  𝑠𝛼−𝑘−1𝑦 𝑘 𝑛−1
𝑘=0  0 = 𝐹(𝑠) 

 

Since Laplace transform is linear equation can be solved with respect to Y(s) as follows 

 

Y(s) = 
𝐹 𝑠 + 𝑠𝛼−𝑘−1𝑦  𝑘 𝑛−1

𝑘=0  0 

𝑠𝛼  by using initial conditions 

     Y(s) = 
𝐹 𝑠 + 𝑐𝑘𝑠𝛼−𝑘−1𝑛−1

𝑘=0

𝑠𝛼  

by Laplace transform of the two-parameter of Mittag-Leffler type as well as the linearity property it follows 

𝑌 𝑠 =
𝐹 𝑠 

𝑠𝛼
 +   

𝑠𝛼−𝑘−1

𝑠𝛼
𝑐𝑘

𝑛−1

𝑘=0

 

 

Making use of (3.4), 

    =  
𝐹 𝑠 

𝑠𝛼
+  𝐿{𝑡𝑘

𝑛−1

𝑘=0

𝐸𝛼 ,𝑘+1  𝑡
𝛼 } 𝑐𝑘 =  

𝐹 𝑠 

𝑠𝛼
+  𝐿   𝑐𝑘𝑡𝑘

𝑛−1

𝑘=0

𝐸𝛼 ,𝑘+1  𝑡
𝛼   

 

Then using the inverse Laplace transform y(t)  can be found as 

𝐿−1{𝑌(𝑠)} = 𝐿−1  
𝐹 𝑠 

𝑠𝛼
+  𝐿   𝑐𝑘𝑡𝑘

𝑛−1

𝑘=0

𝐸𝛼 ,𝑘+1  𝑡
𝛼    

         𝑦(𝑡) = 𝐿−1  
𝐹 𝑠 

𝑠𝛼
 +  𝑐𝑘𝑡𝑘

𝑛−1

𝑘=0

𝐸𝛼 ,𝑘+1  𝑡
𝛼 = 𝑡𝛼−1𝐸𝛼 ,𝛼 𝑡𝛼 ∗ 𝑓 𝑡 +  𝑐𝑘𝑡𝑘

𝑛−1

𝑘=0

𝐸𝛼 ,𝑘+1  𝑡
𝛼  

which isa required solution. 

 

Example 2  

Consider the Bagley- Torvik equation which arises in modeling the motion of a rigid plate immersed in a 

Newtonian fluid. 

𝐷∗
2𝑦 𝑡 + 2𝐷∗

3

2𝑦 𝑡 + 2𝑦 𝑡 = 8𝑡5; 𝑦 0 = 0, 𝑦′ (0) = 0 

Solution: 

Applying the Laplace transform on both the sides of above equation we have, 

 

𝐿{𝐷∗
2𝑦 𝑡 + 2𝐷∗

3

2𝑦 𝑡 + 2𝑦 𝑡 } = 𝐿{8𝑡5} 
 

𝑠2𝑌 𝑠 − 𝑠𝑦 0 − 𝑦′ 0 + 2  
𝑠2𝑌 𝑠 − 𝑠𝑦 0 − 𝑦′ 0 

𝑠
1

2

 +  2𝑌 𝑠 = 8
5!

𝑠6
 

by  initial conditions 

𝑠2𝑌 𝑠 − 𝑠(0) −  0 + 2  
𝑠2𝑌 𝑠 − 𝑠 0 −  0 

𝑠
1

2

 +  2𝑌 𝑠 = 8
5!

𝑠6
 

𝑠2𝑌 𝑠 + 2
𝑠2𝑌 𝑠 

𝑠
1

2

+  2𝑌 𝑠 = 8
5!

𝑠6
 

 

Y(s)  𝑠2 + 2𝑠
3

2 + 2  =  8
5!

𝑠6  =  𝑌 𝑠 =
8×5!

𝑠6 𝑠2+2𝑠
3
2+2 
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Applying inverse Laplace transform both side of above equation 

 

𝐿−1 𝑌 𝑠  = 𝐿−1  
8 × 5!

𝑠6  𝑠2 + 2𝑠
3

2 + 2 
 =  𝐿−1  

8 × 5! 𝑠−6

 𝑠2 + 2𝑠
3

2 + 2 
  

Applying (3.6)                𝛼 = 2,    𝛽 =
3

2
, 𝛾 =  −6 

                𝑦 𝑡 =  𝐿  
8 × 5! 𝑠−6

 𝑠2 + 2𝑠
3

2 + 2 
 = 8 × 5! 𝑡6   

(−2)𝑛+𝑘  
𝑛 + 𝑘

𝑘
 

𝛤(
1

2
𝑘 + 2 𝑛 + 1 + 6)

∞

𝑘=0

𝑡𝑘
1

2
+2𝑛

∞

𝑛=0

 

This is a required solution. 

 

V. Conclusions 
The fractional derivatives are described in the Caputo sense, obtained by Riemann-Liouville fractional 

integral operator. InCaputo Fractional differential equation initial conditions have clear physical interpretation 

which is a main advantage of Caputo operator over Riemann-Liouville fractional operator. Solving some 

problems show that the Laplace transform is a powerful and efficient technique for obtaining analytic solution 

of linear ordinary fractional differential equations. 
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